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Abstract

This paper deals with the influence of thermal conductivity and specific heat on the stability of a superconducting

tube. The study is made to foresee the effect of a pulse of energy, which causes the quench of the superconductor.

Depending on the applications, the transition of the superconductor is provoked, like for the superconducting current

limiter, or accidental. In any case, it is necessary to protect the superconductor from an excessive rise of temperature to

avoid its destruction. Using dimensionless analysis, the study is applied to a cylindrical tube.

� 2005 Published by Elsevier Ltd.
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1. Introduction

Superconductors are characterised by two fundamen-

tal properties, they have no resistance and are perfectly

diamagnetic. This diamagnetism allows to expel or to

trap magnetic field. These properties exist only under

some conditions on temperature T, magnetic field H

and current density J. In this 3-D space, three critical

values Tc, Hc and Jc, define a critical surface for a given

material. This material is in superconducting state if,

and only if, its functioning point is located under the

so defined surface.

When a local energy is supplied in a superconducting

material, its temperature increases. If the temperature
0017-9310/$ - see front matter � 2005 Published by Elsevier Ltd.

doi:10.1016/j.ijheatmasstransfer.2005.02.010

* Corresponding author. Tel.: +33 3 83 68 41 25; fax: +33 3 83

68 41 85.

E-mail address: jean.leveque@green.uhp-nancy.fr (J. Lévê-
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rise is sufficient, a part of the superconductor becomes

resistive. Therefore, two cases are to be considered:

either the normal zone vanishes and the system is stable

or it expands to the whole system and the system is

unstable. This transition could be useful in some uses

to limit the current or to give a pulse of energy, but it

must be avoided in other applications. Whatever the

application, the study of the transition is necessary to

prevent an excessive temperature rise of the supercon-

ductor for fear of destruction.

High critical temperature materials, which appear in

1986, will be used, without any doubt, in many areas,

and especially in electrical engineering. Today, those

new materials are mainly ceramics and can be used, in

some applications, under a bulk shape.

To contribute to the expansion of this material, be-

sides theoretical studies, engineering tools have to be

developed to help the designer of such apparatus. This

paper is a contribution to the study of the important

problem of the stability of the bulk superconductor.

mailto:jean.leveque@green.uhp-nancy.fr
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The study presented here concerns the influence of

the geometrical and physical parameters on the stability

of a tube shaped superconductor. This form is used in

many applications like current lead or cylindrical cur-

rent limiter.

Taking into account the fixed goal, we have to set

methods in which the parameters appear explicitly.

To do that, we set some hypothesis to simplify the

models.

The methods presented as well as the numerical re-

sults could be extended to other superconducting mate-

rial or to other shapes.

The paper is divided into three main parts; the

first one is devoted to the model, the hypothesis and

the analytical solutions. Numerical results are devel-

oped in the second part. The variations of the physical

parameters with the temperature are presented in the

last part.
2. Modelling

The studied system is a tube made of a bulk super-

conducting material and usually used as a current lead.

All the geometrical parameters are reported in Fig. 1.

Of course, because of the shape, cylindrical co-ordinates

are used to set the mathematical model.

We study the behaviour of this tube when an energy

pulse is applied for a short time in a small zone in

its thickness. The considered impulsion can be pro-

voked by an extra current, by a shock or by a structure

default.
Fig. 1. Representation of the tube.
2.1. Limits of the study and assumptions

The study will be limited to a short time following the

pulse application, this time is sufficient to know if the

system goes to a stable state or not. The shortness of

the time implies that the heat cannot diffuse to the bor-

ders of the tube, so the temperature can be considered as

adiabatic on the walls. So, the conditions of the study

are the followings:

• T = Tbath for the whole tube at t = 0.

• oT
on

¼ 0 on the boundaries 8t ð1Þ

• The current in the tube is constant because it is usu-

ally imposed by an external source.
• Only the own field of the tube is considered to the

exclusion of any other external field.

2.2. Heat transfer

Temperature distribution T(r,h,z, t) is governed by

heat transfer equation:

Cp
oT
ot

¼ div K ~rðT Þ
� �

þ P ð2Þ

where P is an internal source, which is the power dissi-

pated by Joule effect (W m�3), Cp(T) is the specific heat

(J m�3 K�1), KðTÞ is the tensor of the thermal conduc-

tivity (W m�1 K�1).

To simplify this tensor, radial and axial thermal con-

ductivities are expressed as functions of the azimuthal

component of thermal conductivity. Introducing coeffi-

cients ar and az, this tensor can be expressed as

K ¼
kz 0 0

0 kr 0

0 0 kh

0B@
1CA ¼ kh

1=az 0 0

0 1=ar 0

0 0 1

0B@
1CA ð3Þ

In cylindrical co-ordinates, Eq. (2) becomes:

Cp
oT
ot

¼ kz
o2T
oz2

þ kr
o2T
or2

þ 1

r
oT
or

� �
þ kh

r2
o2T

oh2
þ P ð4Þ

and could be rewritten as

Cp
oT
ot

¼ kh
1

az

o2T
oz2

þ 1

ar

o2T
or2

þ 1

r
oT
or

� �
þ 1

r2
o2T

oh2

� �
þ P

ð5Þ
Now, we introduce a coefficient acp. Thanks to this coef-

ficient, we are able to vary the specific heat around a pre-

scribed value. So, the last equation is rewritten as

following:

acpCp
oT
ot

¼ kh
1

az

o2T
oz2

þ 1

ar

o2T
or2

þ 1

r
oT
or

� �
þ 1

r2
o2T

oh2

� �
þ P

ð6Þ



J. Lévêque, A. Rezzoug / International Journal of Heat and Mass Transfer 48 (2005) 2815–2821 2817
To solve this equation an analysis of the dissipation

power is necessary.

2.3. Dissipated power

Dissipation term P can be shared in two terms:

• Pj, due to the Joule effect when the superconductor

quenches,

• Pp, due to the heater pulse.

Several models exist to describe the power dissipation

due to the Joule effect in a high temperature supercon-

ductor, as we can see in Fig. 2.

The simulating model is issued from some simulation

of losses in high temperature superconducting material.

This model is not suitable to have an analytical solution

of Eq. (6).

Using Bean�s model, Pj can be expressed under two

forms depending on the temperature of the

superconductor:

P j ¼ P jc ¼ qelJ
2
s if T > T c

P j ¼ 0 if T < T c

(
Unfortunately, this kind of step function is not suitable

to solve analytically Eq. (6).

To do that, we suggest to adopt a linear function

Pj(T), the slope of this one is called D.
At first sight, this approximation seems to be a strong

hypothesis and needs explanations. The adopted model

is based on the conservation of the average dissipated

power compared to the Bean�s model. To respect that,

slope D is chosen so as the hatching areas in Fig. 2 be-

comes equal. With this condition, the average power is

independent between this model and Bean�s model. Like

in the simulating model, the power begins to be dissi-

pated at the bath temperature. So, our model is interme-

diate between Bean�s and simulating model.

The second part of dissipation term, Pp, is the exter-

nal energy supplied to the superconductor. To start the

quench, we consider a given energy Ep distributed on a

small zone V(r,h,z, t) of the tube for a time t. So the spe-
Fig. 2. Representation of
cific energy distributed is given as: P(r,h,z, t) =
Ep/(V(r,h,z, t)).

2.4. Method of resolution

Taking into account the two parts of the dissipation

term, Eq. (6) is rewritten as follows:

lCpacp
kh

oT
ot

¼ 1

az

o
2T
oz2

þ 1

ar

o
2T
or2

þ 1

r
oT
or

� �
þ 1

r2
o
2T

oh2

þ D
kh

ðT � T bathÞ þ
P pðr; h; z; tÞ

kh
ð7Þ

with Cp the specific heat and l the density.

To solve this equation independently of the sizes of

the tube, we introduce dimensionless variables as follow:

r1 ¼
r
rb

rab ¼
rb � ra
rb

z1 ¼
z
z0

H¼ T � T b

T 0 � T b

8>>>>>>>>>>><>>>>>>>>>>>:
;

s¼ t
kh

lCpr2b

Uj ¼
D
kh

r2b

Up � f ðsÞ ¼
r2b

khðT c � T bathÞ
P pðr;h; z; tÞ

with P pðr;h; z; tÞ ¼ P p � f ðr;h; z; tÞ

8>>>>>>>>>>><>>>>>>>>>>>:
ð8Þ

We notice that dimensionless power, Uj, depends on rb.

To give a simple form to the equation, we remove all

the subscripts. So, using the previous dimensionless var-

iable, with the following notations, r, z, h, and s, Eq. (7)
becomes:

oH
os

¼ 1

az

o2H
oz2

þ 1

ar

o2H
or2

þ 1

r
oH
or

� �
þ 1

r2
o2H

oh2
þ UjH

þ Up � f ðr; h; z; sÞ ð9Þ

To suppress the term depending onH in Eq. (9), we set a

last change of variable:

Hðr; h; z; sÞ ¼ eHðr; h; z; sÞeas ð10Þ

Replacing H by its expression, gathering the time depen-

dant terms and dividing by the exponential, Eq. (9)

becomes:
Joule effect losses.



Table 1

Characteristics of the studied system

Physical reference parameters kref 5 W m�1 K�1

Cref 106 J m�3 K�1

Physical parameters ar and az Between 0.1 and 10

acp Between 0.25 and 10

Geometrical parameters rab Between 0 and 1

zo Between 0.25 and 5

rb 0.01 m

Electrical parameters J 107 A m�2

r 10�5 X m

Dimensionless parameters Uj 133.3

Up 200 000

s 0.025

sp 0.0025

2818 J. Lévêque, A. Rezzoug / International Journal of Heat and Mass Transfer 48 (2005) 2815–2821
acp
o eH
os

¼ 1

az

o2 eH
oz2

þ 1

ar

o2 eH
or2

þ 1

r
o eH
or

 !
þ 1

r2
o2 eH
oh2

þ e�asUpf ðr; h; z; sÞ þ ðUj � aacpÞ eH ð11Þ

Until now a is arbitrary, we choose a = Uj/acp to sup-

press the last term and obtain:

acp
o eH
os

¼ 1

az

o
2 eH
oz2

þ 1

ar

o
2 eH
or2

þ 1

r
o eH
or

 !
þ 1

r2
o
2 eH
oh2

þ e
�

Uj
acp

sUpf ðr; h; z; sÞ ð12Þ

Eq. (11) is solved thanks to an integral transform [1].

The solution is obtained under a series form:

eHðr; h; z; sÞ ¼
X
p

X
m

X
m

Zðgp; zÞ
Nz

Rmðbm; rÞ
N mðbmÞ

1

cp

� 1

acp
e�ðg2pþb2mÞs=acp

�
�
Z tp

0

g000ðgp; bm; m; t
0Þe�ðg2pþb2mÞt0=acp dt0

� ��
ð13Þ

withZ tp

0

g000ðgp; bm; m; t
0Þe�ðg2pþb2mÞt0=acp dt0

¼
Z þzp

�zp

Zðgp; z0Þdz0
Z rpb

rpa

r0Rmðbm; r
0Þdr0

�
Z þhp

�hp
cosðmðh� h0ÞÞdh0

�
Z tp

0

Upe
�Ujs

0
e�ðg2pþb2mÞs=acp ds ð14Þ

The terms of the solution can be detailed along each axis

as follows:

• For the z-axis:

Nz ¼
1

2zo
gp ¼ p

p
zo

and Zðgp; zÞ ¼ cos gp
ffiffiffiffiffiffi
azz

p� 	
ð15Þ

• For the r-axis:

1

N mðbmÞ
¼ p2

2

arJ 2
m
ffiffiffi
ar

p ð ffiffiffiffi
ar

p
rabbmÞb2

m

J 2
m
ffiffiffi
ar

p ð ffiffiffiffi
ar

p
rabbmÞ � J 2

m
ffiffiffi
ar

p ð ffiffiffiffi
ar

p
bmÞ

ð16Þ

Rmðbm; rÞ ¼ J m
ffiffiffi
ar

p ð ffiffiffiffi
ar

p
rbmÞY m

ffiffiffi
ar

p ð ffiffiffiffi
ar

p
bmÞ

� J m
ffiffiffi
ar

p ð ffiffiffiffi
ar

p
bmÞY m

ffiffiffi
ar

p ð ffiffiffiffi
ar

p
rbmÞ ð17Þ

with bm the solution of:

J m
ffiffiffi
ar

p ð ffiffiffiffi
ar

p
rabbmÞY m

ffiffiffi
ar

p ð ffiffiffiffi
ar

p
bmÞ

� J m
ffiffiffi
ar

p ð ffiffiffiffi
ar

p
bmÞY m

ffiffiffi
ar

p ð ffiffiffiffi
ar

p
rabbmÞ ¼ 0 ð18Þ

where Jm, Ym are elliptic functions.
• For the h-axis:

c ¼ 1 if m 6¼ 0 and 2 if m ¼ 0 ð19Þ

To achieve the solution, the term number of the series

is the result of a compromise between a good preci-

sion along each direction and a reasonable time of

computation. After trials, 19 terms have been chosen.
3. Numerical results

At first, we define a reference system, after that we

study the effect of a variation of the physical parameters

on this system. Subsequently, we study the influence of

the dissipated power.

3.1. Reference system

Considering a high temperature superconducting

material, such as YBCO and BSCCO, the specific heat

and the thermal conductivity respectively vary between

105 and 107 J/m�3 K�1 and 0.5–50 W m�1 K�1. We have

chosen a medium of those usual values.

The range of variation of the physical parameters is

defined by coefficients ar, az and acp that appear in the

heat transfer equation. The same value is chosen for

radial and axial conductivity, so ar = az.
All the characteristics of the studied system are sum-

marised in the Table 1.

The external radius, rb, of the tube being fixed, we

remember that in Eq. (8) the initial power pulse depends

on this radius, and so the main study depends on this

choice. To determine the initial power and the Joule ef-

fect dissipation, we used the parameters of Table 2, these

values are usual.

The dimensional duration of the heat power pulse is

s = 0.025. Depending on the kind of physical parame-

ters, this time is sufficient to obtain a rise in temperature

situated between 100 K and 200 K. To achieve the



Table 2

Variation of the power dissipation

J (A m�2) 107

r (X m)�1 105

rb (m) 0.001 0.01 0.1

Uj 1.33 133.33 133333.3

J (A m�2) 107

rb (m) 0.01

r (X m)�1 106 105 104

Uj 13 133.33 1333.33

r (X m)�1 105

rb (m) 0.01

J (A m�2) 106 107 108

Uj 1.33 133.3 13333.3
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numerical solution, among the possible choices, the ratio

between the small volume, where the initial power is dis-

sipated, and the whole volume of any tube is kept con-

stant, its value is 0.25%.

In all the cases, we impose a value for acp and we in-

crease ar from 0 to know the limit of the stability. So, be-

low the limit value of ar the system is stable, upper it is

unstable.

In a first part, we study the influence of the physical

parameters on the stability versus the geometrical size of

the tube. Then we study the influence of the dissipated

power for a given geometrical configuration.

3.2. Study of the geometry

For the fixed values of rab, the obtained results are

summarised in Figs. 3–7. In each figure, the curves are

sketched for different values of z0. Each curve divides

the plane in two parts. The system is stable if and only

if point (a,acp) is located in the low half space. It means

that, in this case, the initial normal zone vanishes.

We notice that, whatever the dimensionless internal

radius of tube, rab, the stability curve is constant for a

value of acp lower than one. Indeed, for these values of

acp, the specific heat is low, and so, the system is unsta-
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ble. We observe that for the high value of acp, a super-

conducting tube is very stable.

One can see that stability is very difficult to obtain for

a thin tube (small value of rab), indeed the heat is trans-

ferred quickly to the whole domain and causes an

important increase of temperature.
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3.3. Study of the power

The dimensionless power dissipation Uj depends on

rb, r, J and, of course, thermal conductivity. This last

one is directly included in the calculus of stability. Table

2 gives some numerical results that show the effects of

the variation of these parameters on the power

dissipation.

To highlight the effect of the variation of the dissipa-

tion power, we have chosen to multiply and to divide

Joule power dissipation, Uj, by a factor five (Fig. 8).

We notice that the influence of Joule dissipation on

stability is very important. Below the reference value

of the electrical parameter, given in Table 1, it is very

difficult to obtain a stable behaviour. Above these refer-

ence values, the tube can be considered as always stable.
0
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T
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Fig. 10. Thermal conductivity of YBa2Cu3O7�x, (�) x = 0, (j)

x = 0.18, (m) x = 0.34, (*) x = 0.48, (*) Bi2Sr2CaCu2O8.
4. Physical parameters

Unfortunately, the main parameters of the model de-

pend on the temperature. So, a particular attention must

be devoted to the evolution of the parameter of usual

superconducting materials with the temperature. Many
results are previously presented by authors and can be

found in literature. We just mention some of them in

order to highlight the main characteristics that will be

considered for this study.

4.1. Specific heat

From Refs. [2–4], we have extracted a set of results

related to two phases of YBCO and one of BSCCO.

One can see that the variations of the specific heat of

the two phases of YBCO are very different (Fig. 9).

For example, at a temperature of 150 K, the ratio of

the values related to the phases of YBCO is about 6

and reaches 10 when the materials are different. Our pre-

sentation may be extended to a lot of high temperature

superconductors. We observe that in the considered

range of temperature (77 K–150 K) we do not take into

account the dependence on specific heat with tempera-

ture but only an average value of it.

4.2. Thermal conductivity

Thermal conductivity also depends on the tempera-

ture and on the chosen material. In Fig. 10, the curves
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characterise three phases of YBCO and one of BSCCO

material. Beyond the nitrogen liquid temperature

(77 K), we can notice that the value of thermal

conductivity becomes roughly constant. In practice, for

YBCO, we adopt a value included between 2.5 and

4.5 W m�1 K�1 [5–8]. Authors present many other re-

sults, in the case of BiSrCaCuO, the value of the thermal

conductivity varies between 1.0 and 1.5 W m�1 K�1.

4.3. Electrical resistivity

Above the critical temperature [2], usually, the elec-

trical resistivity versus temperature can be expressed

as: q = AT�1 + BT.

An important property of the superconducting mate-

rials is their high anisotropy in term of resistivity when

plane ‘‘ab’’ and axis ‘‘c’’ are respectively considered. A

ratio of 100 is not an absurd value.
Figs. 11 and 12 show the resistivity versus the tem-

perature, for different phases of YBCO and BSCO,

respectively in plan ‘‘ab’’ and along c-axis.
5. Conclusions

A 3D model is developed to study the thermal stabil-

ity of a HTS tube. Under some assumptions we can ex-

pect the behaviour of the material in terms of stability.

The obtained results show the relative influence of

specific heat and thermal conductivity on thermal stabil-

ity. The influence of power dissipation is also studied.

For a given tube, knowing its parameters, this study

allows to delimit a functioning zone. Furthermore, the

developed method or the obtained results can help to

design a suitable tube for a specific apparatus, such as

a current lead.

Themodel canbe extended and applied to other shapes

and apparatus using bulked or wired superconductors.
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